
1

1 An Introduction to Test Automation
and Its Goals

Software development is rapidly becoming an independent area of
industrial production. The increasing digitalization of business pro-
cesses and the increased proliferation of standardized products and
services are key drivers for the use of increasingly efficient and
effective methods of software testing, such as test automation. The
rapid expansion of mobile applications and the constantly changing
variety of end-user devices also have a lasting impact.

1.1 Introduction

A key characteristic of the industrialization of society that began at the end
of the 18th Century has been the mechanization of energy- and time-con-
suming manual activities in virtually all production processes. What began
more than 200 years ago with the introduction of mechanical looms and
steam engines in textile mills in England has become the goal and mantra of
all today’s manufacturing industries, namely: the continuous increase and
optimization of productivity. The aim is always to achieve the desired quan-
tity and quality using the fewest possible resources in the shortest possible
time. These resources include human labor, the use of machines and other
equipment, and energy.

Software development

and software testing on

the way to industrial mass

production

In the pursuit of continuous improvement and survival in the face of
global competition, every industrial company has to constantly optimize its
manufacturing processes. The best example of this is the automotive indus-
try, which has repeatedly come up with new ideas and approaches in the
areas of process control, production design and measurement, and quality
management. The auto industry continues to innovate, influencing other
branches of industry too. A look at a car manufacturer’s factories and pro-
duction floor reveals an impressive level of precision in the interaction
between man and machine, as well as smooth, highly automated manufac-
turing processes. A similar pattern can now be seen in many other produc-
tion processes.

1 An Introduction to Test Automation and Its Goals2

The software development industry is, however, something of a negative
exception. Despite many improvements in recent years, it is still a long way
from the quality of manufacturing processes found in other industries. This
is surprising and perhaps even alarming, as software is the technology that
has probably had the greatest impact on social, economic, and technical
change in recent decades. This may be because the software industry is still
relatively young and hasn’t yet reached the maturity of other branches of
industry. Perhaps it is because of the intangible nature of software systems,
and the technological diversity that makes it so difficult to define and consis-
tently implement standards. Or maybe it is because many still see software
development in the context of the liberal, creative arts rather than as an
engineering discipline.

Software development has also had to establish itself in the realm of
international industrial standards. For example, Revision 4 of the Interna-
tional Standard Industrial Classification of All Economic Activities (ISIC),
published in August 2008, includes the new section J Information and Com-
munication, whereas the previous version hid software development services
away at the bottom of the section called Real estate, renting and business
activities ([ISIC 08], [NACE 08]).

Software development as

custom manufacturing

Although the “young industry” argument is losing strength as time goes
on, software development is still often seen as an artistic rather than an engi-
neering activity, and is therefore valued differently to the production of
thousands of identical door fittings. However, even if software development
is not a “real” mass production process, today it can surely be viewed as
custom industrial manufacturing.

But what does “industrial” mean in this context? An industrial process
is characterized by several features: by the broad application of standards
and norms, the intensive use of mechanization, and the fact that it usually
involves large quantities and volumes. Viewed using these same attributes,
the transformation of software development from an art to a professional
discipline is self-evident.

1.1.1 Standards and Norms

Since the inception of software development there have been many and var-
ied attempts to find the ideal development process. Many of these
approaches were expedient and represented the state of the art at the time.
Rapid technical development, the exponential increase in technical and
application-related complexity and constantly growing economic challenges
require continuous adaptation of the procedures, languages and process
models used in software development—waterfall, V-model, iterative and
agile software development; ISO 9001:2008, ISO 15504 (SPICE), CMMI,

31.1 Introduction

ITIL; unstructured, structured, object-oriented programming, ISO/IEC/
IEEE 29119 software testing—and that’s just the tip of the iceberg. Software
testing has also undergone major changes, especially in recent years. Since
the establishment of the International Software Testing Qualifications
Board (ISTQB) in November 2002 and the standardized training it offers
for various Certified Tester skill levels, the profession and the role of soft-
ware testers have evolved and are now internationally established [URL:
ISTQB]. The ISTQB® training program is continuously expanded and
updated and, as of 2021, comprises the following portfolio:

Fig. 1–1 
The ISTQB® training

product portfolio, as of

2022

AGILE

EXPERT LEVEL

TEST MANAGEMENT

AGILE TECHNICAL TESTER

TEST MANAGER

AI TESTING

SECURITY TESTER

TEST AUTOMATION
ENGINEER

MODEL-BASED TESTER

USABILITY TESTING

AUTOMOTIVE SOFTWARE
TESTER

GAMBLING INDUSTRY
TESTER

MOBILE APPLICATION
TESTING

PERFORMANCE TESTING

ACCEPTANCE TESTING

TEST ANALYST

TECHNICAL TEST ANALYST

CERTIFIED TESTER

AGILE TESTER

AGILE TEST LEADERSHIP
AT SCALE

IMPROVING THE
TEST PROCESS

ADVANCED LEVELADVANCED LEVEL

FOUNDATION LEVEL

FOUNDATION LEVEL

CORE SPECIALIST

GAME TESTING
BETA

1 An Introduction to Test Automation and Its Goals4

Nevertheless, software testing is still in its infancy compared to other engi-
neering disciplines with their hundreds, or even thousands, of years of tradi-
tion and development. This relative lack of maturity applies to the subject
matter and its pervasiveness in teaching and everyday practice.

One of the main reasons many software projects are still doomed to
large-scale failure despite the experience enshrined in its standards is
because the best practices involved in software development are largely non-
binding. Anyone ordering software today cannot count on a product made
using a verifiable manufacturing standard.

Not only do companies generally decide individually whether to apply
certain product and development standards, the perpetuation of the non-
binding nature of standards is often standard practice at many companies
too. After all, every project is different. The “Not Invented Here” syndrome
remains a constant companion in software development projects [Katz &
Allen 1982].

Norms and standards are

often missing in test

automation

Additionally, in the world of test automation, technical concepts are
rarely subject to generalized standards. It is the manufacturers of commer-
cial tools or open source communities who determine the current state of the
art. However, these parties are less concerned with creating a generally
applicable standard or implementing collective ideas than they are with gen-
erating a competitive advantage in the marketplace. After all, standards
make tools fundamentally interchangeable—and which company likes to
have its market position affected by the creation of standards? One excep-
tion to this rule is the European Telecommunication Standards Institute
(ETSI) [URL: ETSI] testing and test control notation (TTCN-3). In practice,
however, the use of this standard is essentially limited to highly specific
domains, such as the telecommunications and automotive sectors.

For a company implementing test automation, this usually means com-
mitting to a single tool manufacturer. Even in the foreseeable future, it won’t
be possible to simply transfer a comprehensive, automated test suite from
one tool to another, as both the technological concepts and the automation
approaches may differ significantly. This also applies to investment in staff
training, which also has a strongly tool-related component.

Nevertheless, there are some generally accepted principles in the design,
organization, and execution of automated software testing. These factors
help to reduce dependency on specific tools and optimize productivity
during automation.

The ISTQB® Certified Tester Advanced Level Test Automation Engineer
course and this book, which includes a wealth of hands-on experience,
introduce these fundamental aspects and principles, and provide guidance
and recommendations on how to implement a test automation project.

51.1 Introduction

1.1.2 The Use of Machines

Another essential aspect of industrial manufacturing is the use of machines
to reduce and replace manual activities. In software development, software
itself is such a machine—for example, a development environment that sim-
plifies or enables the creation and management of program code and other
software components. However, these “machines” are usually just editing
and management systems with certain additional control mechanisms, such
as those performed by a compiler. The programs themselves still need to be
created by human hands and minds. Programming mechanization is the goal
of the model-based approaches, where the tedious work of coding is per-
formed by code generators. The starting point for code generation is a
model of the software system in development written, for example, in UML
notation. In some areas this technology is already used extensively (for
example, in the generation of data access routines) or where specifications
are available in formal languages (for example, in the development of
embedded systems). On a broad scale, however, software development is
still pure craftsmanship.

Mechanization in Software Testing

Use of tools for test case

generation and test

execution

One task of the software tester is the identification of test conditions and the
design of corresponding test cases. Analogous to model-based development
approaches, model-based testing (MBT) aims to automatically derive and
generate test cases from existing model descriptions of the system under test
(SUT). Sample starting points can be object models, use case descriptions or
flow graphs written in various notations. By applying a set of semantic rules,
domain-oriented test cases are derived based on written specifications. Cor-
responding parsers also generate abstract test cases from the source code
itself, which are then refined into concrete test cases. A variety of suitable
test management tools are available for managing these test cases, and such
tools can be integrated into different development environments. Like the
generation of code from models, the generation of test cases from test
models is not yet common practice. One reason for this is that the outcome
(i.e., the generated test case) depends to a high degree on the model’s quality
and the suitability of its description details. In most cases, these factors are
not a given.

Another task performed by software testers is the execution and report-
ing of test cases. At this point, a distinction must be made between tests that
are performed on a technical interface level, on system components, and on
modules or methods; or functional user-oriented tests that are rather per-
formed via the user interface. For the former, technical tools such as test
frameworks, test drivers, unit test frameworks and utility programs are

1 An Introduction to Test Automation and Its Goals6

already in widespread use. These tests are mostly performed by “techni-
cians” who can provide their own “mechanical tools”. Functional testing,
on the other hand, is largely performed manually by employees from the
corresponding business units or by dedicated test analysts. In this area, tools
are also available that support and simplify manual test execution, although
their usage involves corresponding costs and learning effort. This is one of
the reasons why, in the past, the use of test automation tools has not been
generally accepted. However, in recent years, further development of these
tools has led to a significant improvement in their cost-benefit ratio. The
simplification of automated test case creation and maintainability due to the
increasing separation of business logic and technical implementation has led
to automation providing an initial payoff when complex manual tests are
automated for the first time, rather than only when huge numbers of test
cases need to be executed or the nth regression test needs to be repeated.

1.1.3 Quantities and Volumes

While programming involves the one-time development of a limited number
of programs or objects and methods that, at best, are then adapted or cor-
rected, testing involves a theoretically unlimited number of test cases. In
real-world situations, the number of test cases usually runs into hundreds or
thousands. A single input form or processing algorithm that has been devel-
oped once must be tested countless times using different input and dialog
variations or, for a data-driven test, by entering hundreds of contracts using
different tariffs. However, these tests aren’t created and executed just once.
With each change to the system, regression tests have to be performed and
adjusted to prove the system’s continuing functionality. To detect the poten-
tial side effects of changes, each test run should provide the maximum pos-
sible test coverage. However, experience has shown that this is not usually
feasible due to cost and time constraints.

The required scope of

testing can only be

effectively handled with

the help of mechanization

This requirement for the management of large volumes and quantities
screams out for the use of industrial mechanization—i.e., test automation
solutions. And, if the situation doesn’t scream, the testers do! Unlike
machines, testers show human reactions such as frustration, lack of concen-
tration, or impatience when performing the same test case for the tenth time.
In such situations, individual prioritization may lead to the wrong, mission-
critical test case being dropped.

In view of these factors, it is surprising that test automation hasn’t been
in universal use since way back. A lack of standardization, unattractive cost-
benefit ratios, and the limited capabilities of the available tools may have
been reasons for this. Today, however, there is simply no alternative to test
automation. Increasing complexity in software systems and the resulting

71.2 What is Test Automation?

need for testing, increasing pressure on time and costs, the widespread adop-
tion of agile development approaches, and the rise of mobile applications
are forcing companies to rely on ongoing test automation in their software
development projects.

1.2 What is Test Automation?

The ISTQB® definition of test automation is: “The use of software to per-
form or support test activities”. You could also say: “Test automation is the
execution of otherwise manual test activities by machines”. The concept
thus includes all activities for testing software quality during the develop-
ment process, including the various development phases and test levels, and
the corresponding activities of the developers, testers, analysts, and users
involved in the project.

Accordingly, test automation is not just about executing a test suite, but
rather encompasses the entire process of creating and deploying all kinds of
testware. In other words, all the work items required to plan, design, exe-
cute, evaluate, and report on automated tests.

Relevant testware includes:

 Software
Various tools (automation tools, test frameworks, virtualization solu-
tions, and so on) are required to manage, design, implement, execute,
and evaluate automated test suites. The selection and deployment of
these tools is a complex task that depends on the technology and scope
of the SUT and the selected test automation strategy.

 Documentation
This not only includes the documentation of the test tools in use, but
also all available business and technical specifications, and the architec-
ture and the interfaces of the SUT.

 Test cases
Test cases, whether abstract or specific, form the basis for the implemen-
tation of automated tests. Their selection, prioritization, and functional
quality (for example: functional relevance, functional coverage, accu-
racy) as well as the quality of their description have a significant influ-
ence on the long-term cost-benefit ratio of a test automation solution
(TAS) and thus directly on its long-term viability.

 Test data
Test data is the fuel that drives test execution. It is used to control test
scenarios and to calculate and verify test results. It provides dynamic

1 An Introduction to Test Automation and Its Goals8

input values, fixed or variable parameters, and (configuration) data on
which processing is based. The generation, production, and recovery of
existing and process data for and by test automation processes require
special attention. Incorrect test data (such as faulty test scripts) lead to
incorrect test results and can severely hinder testing progress. On the
other hand, test data provides the opportunity to fully leverage the
potential of test automation. The importance and complexity of efficient
and well-organized test data management is reflected in the GTB Certi-
fied Tester Foundation Level Test Data Specialist [GTB: TDS] training
course (only in German).

 Test environments
Setting up test environments is usually a highly complex task and is
naturally dependent on the complexity of the SUT as well as on the
technical and organizational environment at the company. It is there-
fore important to discuss general operation, test environment manage-
ment, application management, and so on, with all stakeholders in
advance. It is essential to clarify who is responsible for providing the
SUT, the required third-party systems, the databases, and the test auto-
mation solution within the test environment, and for granting the neces-
sary access rights and monitoring execution.

If possible, the test automation solution should be run separately from
the SUT to avoid interference. Embedded systems are an exception
because the test software needs to be integrated with the SUT.

Although the term “test automation” refers to all activities involved in the
testing process, in practice it is commonly associated with the automated
execution of tests using specialized tools or software.

In this process, one or more tasks that are defined the same way as they
are for the execution of dynamic tests [Spillner & Linz 21], are executed
based on the previously mentioned testware:

 Implement the automated test cases based on the existing specifications,
the business test cases and the SUT, and provide them with test data.

 Define and control the preconditions for automated execution.

 Execute, control, and monitor the resulting automated test suites.

 Log and interpret the results of execution—i.e., compare actual to
expected results and provide appropriate reports.

From a technical point of view, the implementation of automated tests can
take place on different architectural levels. When replacing manual test exe-
cution, automation accesses the graphical user interface (GUI testing) or,
depending on the type of application, the command line interface of the SUT

91.3 Test Automation Goals

(CLI testing). One level deeper, automation can be implemented through the
public interfaces of the SUT’s classes, modules, and libraries (API testing)
and also through corresponding services (service testing) and protocols (pro-
tocol testing). Test cases implemented at this lower architectural level have
the advantage of being less sensitive to frequent changes in the user inter-
faces. In addition to being much easier to maintain, this approach usually
has a significant performance advantage over GUI-based automation. Valu-
able tests can be performed before the software is deployed to a runtime
environment—for example, unit tests can be used to perform automated
testing of individual software components for each build before these com-
ponents are fully integrated and packaged with the software product. The
test automation pyramid popularized by Mike Cohn illustrates the targeted
distribution of automated tests based on their cost-benefit efficiency over
time [Cohn 2009].

Fig. 1–2 
The test automation

pyramid

1.3 Test Automation Goals

The implementation of test automation is usually associated with several
goals and expectations. In spite of all its benefits, automation is not (and
will never be) an end in itself. The initial goal is to improve test efficiency
and thus reduce the overall cost of testing. Other important factors are the
reduction of test execution time, shorter test cycles, and the resulting chance
to increase the frequency of test executions. This is especially important for
the DevOps and DevTestOps approaches to testing. Continuous integration,

UI tests

API tests
Service tests

Protocol tests

Unit/Component tests

1 An Introduction to Test Automation and Its Goals10

continuous deployment, and continuous testing can only be effectively
implemented using a properly functioning test automation solution.

In addition to reducing costs and speeding up the test execution phase,
maintaining or increasing quality is also an important test automation goal.
Quality can be achieved by increasing functional coverage and by imple-
menting tests that can only be performed manually using significant invest-
ments in time and resources. Examples include testing a very large number
of relevant data configurations or variations, testing for fault tolerance (i.e.,
test execution at the API/service level with faulty input data to evaluate the
stability of the SUT), or performance testing in its various forms. Also, the
uniform and repeated execution of entire test suites against different ver-
sions of the SUT (regression testing) or in different environments (different
browsers and versions on a variety of mobile devices) is only economically
feasible if the tests involved are automated.

Benefits of Test Automation

One of the greatest benefits of test automation results from building an
automated regression test suite that enables increasing numbers of test cases
to be executed per software release. Manual regression testing very quickly
reaches the limits of feasibility and cost-effectiveness. It also ties up valuable
manual resources and becomes less effective with every execution, mainly
due to the testers’ unavoidable decline in concentration and motivation. In
contrast, automated tests run faster, are less susceptible to operational errors
and, once they have been created, complex test scenarios can be repeated as
often as necessary. Manual test execution requires great effort to understand
the increasing complexity of the test sequences involved and to execute them
with consistent quality.

Certain types of tests are barely feasible in a manual test environment,
while the implementation and execution of distributed and parallel tests is
relatively simple to automate—for example, for the execution of load, per-
formance, and stress tests. Real-time tests—for example, in control systems
technology—also require appropriate tools.

Since automated test cases and test scenarios are created within a
defined framework and (in contrast to manual test cases) are formally
described in a uniform way, they do not allow any room for interpretation,
and thus increase test consistency and repeatability as well as the overall
reliability of the SUT.

From the overall project point of view there are also significant advan-
tages to using test automation. Immediate feedback regarding the quality of
the SUT significantly accelerates the project workflow. Existing problems
are identified within hours instead of days or weeks and can be fixed before
the effort required for correction increases even further.

111.3 Test Automation Goals

Test automation also enables more efficient and effective use of testing
resources. This applies not only to technical infrastructures, but also to tes-
ters in IT and business units, especially through the automation of regres-
sion testing. As a result, these testers can devote more time to finding
defects—for example, through explorative testing or the targeted use of
various dynamic manual testing procedures.

Drawbacks of Test Automation

As well as advantages, test automation has drawbacks too, and these need
to be considered in advance to avoid unpleasant surprises later on.

Automating processes always involves additional costs, and test auto-
mation is no exception. The initial investments required to set up and launch
a test automation solution include tools (for example, for test execution)
that have to be purchased or developed; workplace equipment for test auto-
mation engineers (TAE) (which usually includes several development and
execution PCs/screens); test environment upgrades; the establishment of
new processes and work steps that become necessary for developing the test
scripts; additional configuration management and versioning systems; and
so on.

In addition to investing in additional technologies or processes, time and
money need to be invested in expanding the test team’s skills. This includes
training to become an ISTQB® Test Automation Engineer, further training
in software development, and training in the use of the test automation solu-
tion and its tools.

The effort required to maintain a test automation solution and its auto-
mated testware —first and foremost of course, the test scripts—is also fre-
quently underestimated. Ultimately, test automation itself generates soft-
ware that needs to be maintained. An unsuitable architecture, non-
compliance with conventions, inadequate documentation, and lack of con-
figuration management all have dramatic effects as soon as the automated
test suite reaches a level at which changes and enhancements take place con-
stantly. The user interface, processes, technical aspects, and business rules in
the SUT change too, and these changes have a direct and immediate impact
on the test automation solution and the automated testware.

It is not uncommon for a test automation engineer to find out about
such changes “in production” when a discrepancy occurs during test execu-
tion. This discrepancy is then reported and rejected by the developer as a
defect in the TAS (a so-called “false positive” result). But this is not the only
scenario in which the TAS leads to failures—as previously mentioned, a TAS
is also just software, and software is always prone to defects.

1 An Introduction to Test Automation and Its Goals12

For this reason, test automation engineers often focus too much on the
technical aspects of the TAS and get distracted from the underlying qualita-
tive test objectives that are necessary for the required coverage of the SUT.

Once a TAS is established and working well, testers are tempted to auto-
mate everything, such as extensive end-to-end testing, intertwined dialog
sequences, or complicated workflows. This sounds like a great thing to do,
but you must be aware of the effort involved in implementing and maintain-
ing automated tests. Just creating and maintaining consistent test data
across multiple systems for extensive end-to-end testing is a major challenge.

The Limitations of Test Automation

Test automation also has its limits. While the technical options are manifold,
sometimes the cost of automating certain manual tests is not proportional to
the benefit.

A machine can only check real, machine-interpretable results and to do
so requires a “test oracle” which also needs to be automated in some way.
The main strength of test automation lies in the precise comparison of
expected and actual behavior within the SUT, while its weakness lies in the
validation of the system and the evaluation of its suitability for its intended
use. Faults in requirement definition or incorrect interpretation of require-
ments are not detected by the test automation solution. A test automation
solution cannot “read between the lines” or apply creativity, and therefore
cannot completely replace (manual) structured dynamic testing or explora-
tory testing. The SUT needs to achieve a certain level of stability and free-
dom from defects at its user and system interfaces for test sequences to be
usefully automated without being subjected to constant changes.

1.4 Success Factors in Test Automation

To achieve the set goals, to meet expectations in the long term, and to keep
obstacles to a minimum, the following success factors are of particular
importance for ongoing test automation projects. The more these are ful-
filled, the greater the probability that the test automation project will be a
success. In practice, it is rare that all these criteria are fulfilled, and it is not
absolutely necessary that they are. The general project framework and suc-
cess criteria need to be examined before the project starts and continuously
analyzed during the project’s lifetime. Each approach has its own risks in the
context of a specific project, and you have to be aware of which success fac-
tors are fulfilled and which are not. Accordingly, the test automation strategy
and architecture need to be continuously adapted to changing conditions.

Please note: in the following sections we won’t go into any further detail
on success factors for piloting test automation projects.

131.4 Success Factors in Test Automation

1.4.1 Test Automation Strategy

The test automation strategy is a high-level plan for achieving the long-term
goals of test automation under given conditions and constraints. Statements
concerning the test automation strategy can be included in a company’s test-
ing policy and/or in its organizational test strategy. The latter defines the
generic requirements for testing in one or more projects within an organiza-
tion, including details on how testing should be performed, and is usually
aligned with overall testing policy.

Every test automation project requires a pragmatic and consistent test
automation strategy that is aligned with the maintainability of the test auto-
mation solution and the consistency of the SUT.

Because the SUT itself can consist of various old and new functional and
technical areas, and because it includes applications and components run on dif-
ferent platforms, it is likely that specific strategies have to be defined in addition
to the existing baseline strategy. The costs, benefits, and risks involved in apply-
ing the strategy to the various areas of the SUT must be considered.

Another key requirement of the test automation strategy is to ensure the
comparability of test results from automated test cases executed through the
SUT’s various interfaces (for example, the API and the GUI).

You will gain experience continuously in the course of a project. The
SUT will change, and the project goals can be adapted accordingly. Corre-
spondingly, the test strategy needs to be continuously adapted and improved
too. Improvement processes and structures therefore have to be defined as
part of the strategy.

Excursus: The Test Automation Manifesto
Fundamental principles for test automation in projects or companies can be articu-
lated to serve as a mindset and guide when tackling various issues. The diagram
below shows an example from the authors‘ own project environment:

Transparency
over

Comfort

Collaboration
over

Independence

Test Automation Manifesto

Quality
over

Quantity

Flexibility
over

Continuity

Test automation must be
highly visible to generate

added value.
We enable transparency,
even if this means that we
have to expose mistakes in

our own work.

It is better to collaborate and
connect with other stakehold-
ers and organizations than to
solve problems on your own.

Reliable results that drive
further work are more
important than a high

number of automated test
cases.

Rather than rigid structures,
we prefer a flexible approach

that can withstand future
challenges.

Fig. 1–3 
The Test Automation

Manifesto



1 An Introduction to Test Automation and Its Goals14

A test automation strategy also needs to be tailored to the type of project it
is used in. Additionally, the different test levels and test types that are to be
supported through automation may also require different approaches.

Section 1.5 on test levels and project types, Appendix A and B provide
an introduction to this topic in the form of an excursus (i.e., they are not a
part of the official ISTQB® CT-TAE syllabus).

Transparency over Comfort
Test automation is characterized by risk calculation and risk avoidance, similar to the
safety net used by a high-wire act. This means that if everything works out correctly,
regression-testing output (i.e., the number of detected defects) is minimal. However,
this doesn’t mean that test automation does not add value. It is important to position
test automation and its results and functions clearly and visibly within the organiza-
tion. It also means that any problems with test automation problems are clearly and
instantly visible. We believe this to be a strength, not a weakness.

Collaboration over Independence
A typical situation occurs when a test automation tool is purchased and handed over
to a tester who is then responsible for its implementation and use. Often, the tester in
question will enter “experimental mode” and try to implement automated test cases
under pressure. A typical behavior pattern in this context is: “Me vs. tool vs. the prod-
uct”—i.e., a tendency to want to solve or work around problems and challenges alone.
Instead, we recommend actively engaging with other roles. For example, if it is diffi-
cult to display a particular table, reach out to the developers, ask the community, or
simply call vendor support.

Quality over Quantity
A typical metric for the value and progress of test automation is the degree of automa-
tion of a test suite, measured either as a percentage or the absolute number of auto-
mated test cases. However, this does not reflect the additional value generated by the
maintainability and robustness of the automated tests. A guiding principle in this con-
text is: “Ten meaningful, stably automated tests are worth more than a thousand
unstable and untraceable test cases”. Ergo, a small regression test suite is often more
useful than a huge test portfolio that is difficult to maintain.

Flexibility over Continuity
Test automation is like a twin of the systems it tests and is often a tool for ensuring the
successful execution of business processes. It delivers the greatest added value when
it can be used over a long period of time with little maintenance. During this time,
technologies, tools, personnel, and even business processes can change significantly.
To remain effective, test automation requires a high degree of flexibility in the face of
change. This is both a strategic and process-related problem as well as a technologi-
cal/architectural one, which is also addressed by the generic test automation architec-
ture described in detail in later chapters.

151.4 Success Factors in Test Automation

1.4.2 Test Automation Architecture (TAA)

The architecture of a test automation solution is crucial to its acceptance, its
existence, and its long-term use. The design of a suitable TAA is also a core
topic of the Test Automation Engineer training. It requires a certain amount
of experience to implement architectural requirements in the best possible
way. For this reason, many test automation projects have a test automation
architect who, like a software development architect, supports the project in
its initial stages and in the case of major modifications.

Test Automation Architecture Requirements

 The architecture of a test automation solution is closely related to the
architecture of the SUT. The individual components, user interfaces, dia-
logs, interfaces, services and technical concepts, languages used, and so
on, must all be addressed.

 The test and test automation strategy should clearly define which func-
tional and non-functional requirements of the SUT are to be addressed
and supported by test automation, and thus by the test automation
architecture. These will usually be the most important requirements for
the software product. Appendix A provides an overview of software
quality characteristics according to ISO 25010 (part of the ISO/IEC
25000:2014 series of standards).

 However, the functional and non-functional requirements of a test auto-
mation solution also have to be considered. In particular, the require-
ments covering maintainability, performance, and learnability are in
focus during the design of a test automation architecture. The SUT is

Fig. 1–4 
Schematic representation

of the layers of a generic

test automation

architecture (gTAA)

Test Automation

SUT

Test Generation

Test Definition

Test Execution

Test Adaptation

1 An Introduction to Test Automation and Its Goals16

subject to continuous development, so a high degree of modifiability and
extensibility is essential. Using modular concepts or separating func-
tional and technical implementation layers are ways to ensure this.

As the size of the automated test suite increases, the performance of
the test automation solution becomes an important issue. Increased test-
ing via the API interfaces rather than the GUI can lead to significant
improvements in efficiency. Additionally, the test automation solution
should not be treated as a mystery that is only accessible to a chosen few
experts. Understandability and learnability are therefore also important
factors. It is also worth looking at the quality characteristics listed in
Appendix A and evaluating them for their potential use within the test
automation architecture.

Collaboration with the software developers and architects is essential to
develop the best possible architecture for a test automation solution in a
given context. This is because a deep understanding of the SUT architecture
is required to meet the requirements mentioned above.

1.4.3 Testability of the SUT

Testability or, more precisely, the automated testability of the SUT, is also a
key success factor. The test automation tools must have access to the objects
and elements of the various user and system interfaces, as well as to system
architecture components and services, to identify and leverage them.

Test automation tools provide a range of automation adapters based on
a wide variety of technologies and platforms. Whether .NET, Java, SAP,
web, desktop or mobile solution, Windows, Linux, Android/iOS, Google
Chrome, Internet Explorer, Microsoft Edge, Mozilla Firefox, or Safari, the
range is huge.

Manufacturers align their solutions with the common standards used by
these technologies and platforms. Problems often arise when the SUT con-
tains implementations and concepts that deviate from these standards. It is
therefore necessary to determine the basic automation capability of the SUT
during a proof of concept, and to find the most suitable automation solu-
tion. Three aspects of this process can be tricky and/or expensive: persuad-
ing the manufacturer of an automation tool to modify their product to fit
your ideas; convincing the development department to adapt the architec-
ture of the SUT and exchange in-house class libraries for others; somehow
finding a workaround using complex constructs within the test automation
solution.

However, as the use of test automation becomes more widespread, espe-
cially in agile development scenarios, the ability to automate test execution
may gain importance as a new quality metric for software applications.

171.4 Success Factors in Test Automation

For example, for automated testing via the GUI, the interaction ele-
ments and data should be decoupled from their layout as far as possible. For
API testing, corresponding interfaces (classes, modules/components, or the
command line) can be provided publicly or developed separately.

For each SUT there are areas (classes, modules, functional units) that are
easy to automate and areas where automation can be very time-consuming.
Potential showstoppers should already have been addressed during tool
evaluation and selection. Because an important success factor is the easiest
possible implementation and distribution of automated test scripts, the ini-
tial focus should be on test areas that can be easily automated. The proof of
successful automated test execution helps the project along and supports
investment in the expansion of test execution. However, if you dive too deep
into critical areas, you may not deliver many results and thus add less value
to the project.

1.4.4 Test Automation Framework

A test automation framework (TAF) must be easy to use, well documented
and, above all, easy to maintain. The foundations for these attributes are
laid in the test automation architecture. The test automation framework
should also ensure a consistent approach to test automation.

The following factors are especially important:

 Implementing reporting facilities
Test reports provide information about the quality of the SUT
(passed/failed/faulty/not executed/aborted, statistical data, and so on)
and should present this information in an appropriate format for the
various stakeholders (testers, test managers, developers, project mana-
gers, and other stakeholders).

 Support for easy troubleshooting and debugging
In addition to test execution and logging, a test automation framework
should provide an easy way to troubleshoot failed tests. The following
are some of the reasons for failures and, ideally, the framework will clas-
sify them in a way that supports failure analysis:

• Failures found in the SUT
• Failures found in the test automation solution (TAS)
• Problems with the tests themselves (for example, flawed test cases
• Problems with the test environment (for example, non-functioning

services, missing test data, and so on)

 Correct setup of the test environment
Automated test execution requires a dedicated test environment that
integrates the various test tools in a consistent manner. If the automated

1 An Introduction to Test Automation and Its Goals18

test environment or the test data cannot be manipulated or configured,
the test scripts might not be set up and executed according to the test
execution requirements. This in turn may lead to unreliable, misleading,
or even incorrect test results (false positive or false negative results). A
false positive test result means that a problem is detected (i.e., the auto-
mated test fails), even if there is no defect in the SUT. A false negative
test result indicates that a test is successful (i.e., the automated test does
not encounter a failure), even though the system is faulty.

 Documentation of automated test cases
The goals of test automation must be clearly defined and described.
Which parts of the software should be tested and to what extent? Which
test automation approach should be used? Which (functional and non-
functional) properties of the SUT are to be automatically tested? Fur-
thermore, the documentation of the automated test cases (or test case
sets) must make it clear which test objective they cover.

 Traceability of automated testing
The functional test scenarios covered by automated test suites are some-
times exceedingly hard to understand, let alone discover. This frequently
results in the creation and implementation of new, redundant test scripts.
In addition to a fundamental lack of transparency, this creates a lot of
unnecessary redundancies and a lack of clarity. Therefore, the test auto-
mation framework must also support traceability between the auto-
mated test case steps and the corresponding functional test cases and test
scenarios.

 High maintainability
One of the biggest risks for the success of a test automation project is the
maintenance effort it involves. Ideally, the effort required to maintain
existing test scripts should be a small percentage of the overall test auto-
mation effort. In addition, the effort required to customize the test auto-
mation solution should be in a healthy proportion to the scope of the
changes to the SUT. If test automation becomes more expensive than the
development of the SUT, the goal of reducing costs using test automation
will probably not be achieved. Automated test cases should therefore be
easy to analyze, change, and extend. A good modular design tailored to
the SUT allows a high degree of reusability for individual components
and thus reduces the number of artifacts that have to be adapted when
changes become necessary.

 Keeping test cases up to date
Some test cases fail because changes are made to the business or techni-
cal requirements that are not yet addressed in the test scripts, rather than
due to an application defect. The affected test cases should not simply be

191.4 Success Factors in Test Automation

discarded but rather adapted accordingly. It is therefore essential that the
test automation engineer receives all relevant information about changes
to the SUT through appropriate processes, documentation, and tools,
and can thus update the test suite in a timely fashion.

 Software deployment planning
The test automation framework should also support the version and
configuration management built into the test automation solution,
which in turn needs to be kept in sync with the current version of the
SUT, again through the appropriate use of tools and standards. The
deployment, modification, and redeployment of test scripts must be kept
as simple as possible.

 Retiring automated tests
When certain automated test sequences are no longer needed, the test
automation framework needs to support their structured removal from
the test suite. In most cases, it is not sufficient to simply delete scripts. To
maintain the consistency of the test automation solution, all dependen-
cies between the components involved must be easy to edit and resolve.
As you do when developing software, you should always avoid produc-
ing dead code.

 SUT monitoring and recovery
Normally, to be able to continuously execute tests, the SUT needs to be
constantly monitored. If a fatal failure occurs in the SUT (a crash, for
example), the test automation framework must be able to skip the cur-
rent test case, return the SUT to a consistent state, and proceed with the
execution of the next test case.

Maintaining Test Automation Code

Test automation code can be just as extensive as development code and can
also be quite complex. This is certainly the case if intricate or complicated
test sequences are implemented within a test script, or if technical interfaces
or user interface elements have to be handled in a specific way. You may also
have to implement time-based triggers or delays, or chain test steps that are
linked to each other via (intermediate) results data. This makes the corre-
sponding maintenance complex, and the effort required increases accord-
ingly. Additionally, there are often multiple test tools in use, different types
of verification and validation, and diverse test resources that have to be
maintained (for example, test input data, test oracles, and test reports). As
for the test automation architecture, maintainability is of the utmost impor-
tance for test code and test scripts too.

1 An Introduction to Test Automation and Its Goals20

Recommendations for Reducing Maintenance Effort:

 Technical independence
It is important to avoid (or at least minimize) technical dependencies and
links to the SUT. For this reason, the various frameworks and automa-
tion tools relocate specific technical links to the GUI and API interfaces
on a separate, central layer. The separation of technical and functional
aspects is essential, and a test automation engineer should never neglect
this aspect of the work.

 Data independence
What applies to the technical links to the SUT also applies to the corre-
sponding test automation base, transaction, and control data, which
need to be abstracted into a separate data access layer. Hardcoded test
data in the test scripts should be avoided—for example, during test veri-
fication. Data changes, such as a new tax rate or a changed confirmation
message should not result in the rewriting of numerous scripts. You also
have to consider the risks involved in making changes where dependen-
cies exist between test scripts via their input and output data.

 Environmental independence
The implemented set of automated test cases should also be executable
in multiple test environments and on multiple platforms. Automation
settings, data taken from the operating platform (such as system time or
OS localization parameters), or data from other applications within the
test environment should be implemented using placeholders or configu-
ration files and settings. Many of these aspects should be provided and
used by the test automation framework.

 Documentation
Good (inline) documentation is a great aid to test script modification
and extension as well as to debugging. Development and documentation
conventions that improve readability and comprehensibility significantly
reduce the overall maintenance effort.

1.5 Excursus: Test Levels and Project Types

The definition of a test automation strategy, the design of a test automa-
tion architecture, and the development of a test automation framework
all take place within a specific context. The automation of test activities
takes place during different phases of the development process and on
different test levels and—depending on the project type—the strategic,
methodological, and technical approaches to test automation may also



211.5 Excursus: Test Levels and Project Types

vary. The following sections provide tips and ideas for designing a suit-
able strategy, architecture, and framework.

1.5.1 Test Automation on Different Test Levels

There are many models on which software development processes can be
based. One widely-used model is the V-model, which provides a basis for
the classification of activities and their dependencies. During testing, the
various test levels are based on this model, while automation plays a dif-
ferent role depending on the test level concerned.

Today, the V-Model has less of a real-life presence as a real-life model
for software development processes, but its phases and levels have
become common terms.

Unit Testing

Typical examples of automated tests are unit, module, and component
tests. These are usually the responsibility of the development team and
are therefore often referred to as “automated developer tests”.

Unit testing verifies functionality within the smallest units of software
that can be tested in a meaningful way. Common definitions for such
units are classes, functions, methods, or procedures, although other defi-
nitions are possible, depending on the language paradigm you are using.

Fig. 1–5 
The V-model

Requirement
Analysis

System Design

Architecture Design

Module Design

Construction and Integration

Verification and Validation

Unit Testing

Integration Testing

System Testing

Acceptance Testing

Coding



1 An Introduction to Test Automation and Its Goals22

Since the SUT usually consists of interdependent units, a testing
framework must be created in which these units can be executed and con-
trolled in isolation.

In object-oriented environments, this is done by replacing dependen-
cies with simple “mocks” that—unlike the dependencies they represent—
have as little functionality as possible. Mocks usually allow you to specify
which values they return on calls and to check whether or how often
methods have been called.

This makes the smallest possible test objects testable in isolation.
Automated unit testing is particularly suitable for providing the develop-
ment team with rapid feedback on the effects of changes to the test
object, and thus provides continual security regarding potential changes
made to existing functionality by major changes within a unit (for exam-
ple, refactoring).

The robustness of individual components can also be effectively
tested at this test level since individual components can usually be
accessed without the restrictions made by upstream data validations.

Unit testing is increasingly used in the context of test-driven develop-
ment (TDD). TDD is a central component of many agile software devel-
opment methods, such as Extreme Programming (XP). The idea behind
TDD is that writing code is driven by testing. Typically, tests are written
in parallel with, or following, code implementation. The downside of this
approach is that high test coverage through automated tests is only pos-
sible with a great deal of effort.

TDD takes a different approach that requires a radical shift in mindset,
namely: test first, code second. Only as much new code is written as is
required for the automated test to be executed so that no defects are
reported. The code must be as simple and comprehensible as possible.
The advantage is obvious: at any point in the development cycle, there is
a set of automated tests that verifies the current code in its entirety.

Mocks

Test-driven development

Fig. 1–6
The basic approach to

test-driven development

Write a failing
test case

Refactoring
Write code
to pass the

test case



231.5 Excursus: Test Levels and Project Types

The following steps need to be considered when using this method:

1. Creation of the required (SUT) class
2. Creation of a test class for the (SUT) class
3. Definition and creation of the methods within the (SUT) class and

the test class
4. Implementation of the test cases within the methods of the test class

a) Definition of the input data
b) Definition of the expected results
c) Using assertions to check for correctness and failures (worst case)

5. Implementation of logic within the methods of the (SUT) class

Tool support (frameworks) at the test development, test automation, and
build automation levels are essential for the successful use of TDD.

Integration Testing

Integration testing describes the explicit testing of the interaction of mul-
tiple units or components. Depending on the situation, both unit and sys-
tem testing methods can be applied on this test level.

 Unit integration testing 
Unit integration testing doesn’t isolate the unit under test using tech-
niques such as mocking (as used in unit testing), but instead tests a
component’s interaction with any corresponding components. This
type of testing is usually fully automated and offers a good level of
security during broad-based refactoring.

 Subsystem and system integration testing 
A similar procedure is used for (sub-)system integration testing: Sec-
tions of the overall system are integrated with each other so that their
interaction can be checked for correctness. Simulators and test frame-
works may be necessary to do this. Usually, the components under
test are not classes or modules, but rather multiple units that have
already been packaged or that already form subsystems.

Integration testing is the test level of choice for verifying robustness and
data integrity between units and components, as well as compliance with
protocols and planned usage.

At this level, some degree of automation makes sense in many cases,
as many systems that are only partially integrated don’t yet have a user
interface (or the user interface hasn’t yet been integrated).

Robustness and data

integrity



1 An Introduction to Test Automation and Its Goals24

System Testing

In sequential development models, functional system testing takes place
in its entirety at a certain point in the development process. Nevertheless,
there are scenarios in which regression testing becomes necessary. These
include:

 Subsequent change requests and enhancements

 Defect corrections

 Refactoring

 Redesign

 Maintenance

When test automation is mentioned in a testing context, it usually refers
to automated system testing. To do this, many tools use the graphical user
interface (GUI) and the database to automatically process test cases that
were defined by testers and were previously performed manually. This is
one of the reasons why automated system testing can be one of the most
complex variants of test automation. Other reasons include:

 The focus is on the entire system under test—possibly including other
underlying systems

 Test cases require business understanding

 GUIs are designed to interact with a human user, not with a program

 Mocks cannot be used to prepare sufficient test data, a task that needs
to take place within the system itself

 Test driver creation for third-party system simulation is required if
system integration testing is not planned

In many cases, automation is also an essential tool for non-functional sys-
tem tests. Load and performance tests are simply not feasible without
automation.

Acceptance Testing

In traditional, sequential development models, acceptance testing is per-
formed after system testing at the end of a software development process.
The software created is accepted by the customer based on the require-
ments documentation created at the beginning of the project.

In some software development models, especially those that use agile
and iterative approaches, concrete acceptance criteria in the form of
test cases are defined in advance with the involvement of all stakeholders.

Agile and iterative

approaches



251.5 Excursus: Test Levels and Project Types

These then serve as the basis for determining whether an implemented
functionality is considered complete.

Behavior-driven development (BDD) [URL: BDD] is a technique that
can be seen as an extension of test-driven development that includes
automated verification of the fulfillment of acceptance criteria. BDD
defines test cases in a way that makes them both automatable and com-
prehensible from a business point of view. This provides the developer
with sufficient background information about the purpose of the
expected code in the form of examples.

For this purpose, domain-specific languages are defined for writing
and recording test cases. Automating these test cases (or the creation of
an automation environment that can process them automatically) is part
of the development process and can be done in advance with the help of
frameworks.

A typical BDD test case consists of three key elements: preconditions
(i.e., a given), actions (i.e., when something happens), and verifications
(i.e., then …).

For example:

 Given

• A customer under 16 years of age is signed in
• and the customer’s shopping cart is empty
• and an event has an age restriction for over-16s only

 When the customer puts this event in the cart

 Then Error message: Event has an age restriction of 16 appears ...

 ... and no ticket should appear in the cart

In this example, the first section describes the required test data that must
be provided before the test case is executed, the second section describes
an action performed on the test object, and the third section specifies val-
idations of the SUT’s response and the corresponding expected results.

1.5.2 Test Automation Approaches for Different Types of Projects

Different project types require a different approach when it comes to test
automation. The automated testing of a standalone application may have
limited technological scope and will focus on functional correctness. In
addition, the focus is on regression testing of multiple planned releases. In
contrast, the use of test automation in a data migration project is usually
seen more as a consistency and comparison test that is not designed to be
repeated for years to come.

Behavior-driven

development

Domain-specific

languages

Different project types

require different



1 An Introduction to Test Automation and Its Goals26

A Conventional Software Development Project

As simple as this kind of project may seem, due to clear functional speci-
fications and software testing documentation, implementing comprehen-
sive test automation can nevertheless be quite tricky. However, this is not
due to business or technical challenges, as extensive and well-structured
business requirements and the corresponding test cases can usually be
developed and made available in time for test execution. A bigger prob-
lem faced by the automation process is the timely availability of the appli-
cation to be automated. When the availability of the test object is
delayed, the developer often expects rapid test execution and feedback
rather than the start of a potentially laborious automation process.

Conventional software development projects therefore initially prior-
itize manual testing and only consider test automation in cases where a
project is planned for the long term with multiple shipping versions.
However, automation is also occasionally employed when testing is
strongly data-driven and testing large numbers of value combinations is
required. In this case, the investment in automation may already pay off
with a single test execution.

Maintenance and Product Enhancement Projects

Currently, software test automation is not very common in these types of
projects, although structured test execution in general isn’t either. The
testing of smaller extensions and modifications is either performed by the
developers themselves or delegated to the relevant business units. How-
ever, this kind of scenario is becoming increasingly difficult to sustain.
Applications are becoming increasingly complex while test resources are
increasingly limited and their costs transparent. If a business unit gener-
ates significant costs that are easily understood, it becomes increasingly
difficult to justify the approach.

From an organizational point of view, this type of project therefore
represents an ideal starting point for test automation. Once a basic auto-
mation strategy has been defined, it can be implemented in small steps on
an ongoing basis. These steps allow for a continuous learning and adap-
tation cycle. Implementation can, for example, be prioritized according
to the following benefits:

 Automation of test cases that affect current changes. Newly devel-
oped areas and those affected by changes are much more prone to
defects than areas of the application that have been in production for
a long time. This remains true for several subsequent releases.

Automation steps in

maintenance projects



271.5 Excursus: Test Levels and Project Types

 Automation of testing activities that are normally performed by the
business unit. In a first step, these tests are also implemented at a
comparable level of quality and detail. This reduces effort for the
business units, thus saving significant costs while maintaining the
same (or a higher) level of quality.

 Automation of test cases derived from the analysis of problems and
failures during operation. This source is particularly useful for select-
ing the test scenarios to be automated, especially when it comes to
stabilizing the SUT.

 Ongoing optimization and expansion of the above scenarios and
especially regression testing, which is normally performed manually
by the business unit or the testing department.

SAP Projects

SAP implementations or enhancement projects are a special case. The
ongoing release changes, upgrades, or enhancement packages pose a sig-
nificant challenge to the company concerned. For every change,
employees from the business units have to check the functionality of the
system after the changes have been implemented. Customized settings,
individual extensions and the system interfaces are particularly affected,
and the testing effort required quickly reaches an almost unmanageable
level. This is one of the reasons many companies don’t install every
upgrade or package and prefer to forgo system improvements rather than
jeopardize overall system stability.

New Functionality

Automated Test
Case Portfolio

Changes

Business Tests

Failures

Optimization and
Expansion

Fig. 1–7 
Sources of changes in the

automated test case

portfolio in maintenance

projects



1 An Introduction to Test Automation and Its Goals28

It is therefore logical that the call for automated tests in this type of
environment is becoming increasingly loud. The highly standardized
application landscape and mostly uniform user interfaces and interface
architectures make a good starting point for automation. Many manufac-
turers of commercial automation solutions are also SAP-certified and
make direct use of transparent SAP technologies.

However, automation is still not standard in SAP environments, partly
due to the challenges involved in test environments, the provision of test
data, and the restoration of a consistent database for cross-system test
execution. It is also due to the complex question of which of the thousands
of possible tests should be automated. The right answers to these concep-
tual questions are key to successful automation in SAP projects.

Agile Projects

“Working software is the primary measure of progress”, states one of the
twelve principles of the Agile Manifesto [URL: AGILE]. The goal of each
sprint is the availability of functional and potentially releasable (i.e., cor-
rect) software. However, especially in the case of very short development
cycles, this is difficult to ensure if programming is carried out right up to
the last minute. Test automation is essential if you want to be sure that all
necessary testing activities can still be performed, especially in an agile
environment. However, automation is complicated by the fact that there
are often no stable test objects available, and the artifacts to be tested are
subject to constant change. This applies not only to the application com-
ponents that are implemented during a sprint, but also to those from pre-
vious iterations. “Welcome changing requirements, even late in develop-
ment” is the corresponding principle in the Agile Manifesto.

This means that full regression tests must be performed regularly for
quality assurance and especially for test automation. Furthermore, these
tests also must be continuously adapted to new requirements and techni-
cal and/or functional changes. It is therefore no surprise that many agile
projects work with completely different methods and approaches to
those found in conventional projects.

Other important approaches that strongly shape the daily work of
agile testers and developers are exploratory testing and pair testing (or
pairing in general). However, since these methods are not directly sup-
ported by test automation, we suggest that interested readers refer to
[Kaner et al. 02], [Baumgartner et al. 21] and [Linz 14].

Continuous integration and continuous delivery, as well as technical
approaches such as test-driven development (TDD) and acceptance test-
driven development (ATDD) are important in projects that use test auto-
mation.

Automation in an SAP

environment

High-efficiency testing

methods and pair testing



291.5 Excursus: Test Levels and Project Types

“Continuous delivery” doesn’t actually describe a single technique or
method, but rather a collection of principles that have the mutual goal of
automating large parts of the integration and delivery process. In addi-
tion to comprehensive test automation (unit testing, system testing, and
acceptance testing), this also includes continuous integration, automated
provisioning of test systems, and automated delivery to different systems
(development, QA, and production environments).

Martin Fowler briefly summarizes continuous delivery as follows
[URL: Fowler].

“You’re doing continuous delivery when:

• Your software is deployable throughout its lifecycle
• Your team prioritizes keeping the software deployable over work-

ing on new features
• Anybody can get fast, automated feedback on the production readi-

ness of their systems any time somebody makes a change to them
• You can perform push-button deployments of any version of the

software to any environment on demand”

Continuous integration is only one part of a continuous delivery process.
Another central component is the automated execution of tests at various
test levels, resulting in specific requirements for the test automation tools:

 Can test execution be integrated into a build system (such as Maven
or Ant)? Is it possible for the automated test cases to be executed
automatically with every build of the system and, depending on the
result, to influence the continuing build process (for example, abort a
build in case of failed test execution)?

 Is it possible to manage and display the test results of different test
levels in a uniform manner? Since test automation for components
also plays an important role (especially in agile projects), it is essential
that these can be displayed and managed in the same way as auto-
mated integration or system tests.

 How can the automated test cases be executed within different envi-
ronments? This question is particularly relevant if the software is to
be delivered continuously to different target systems. This should
then be possible without any additional effort—ideally by changing
only a single configuration parameter.

In summary, the automation of functional regression testing is a must-have
for agile projects. This applies both to the expansion of unit testing (espe-
cially using test-driven development) and to the automation of functional
system tests and automated (or partially automated) acceptance tests.

Continuous integration

and delivery



1 An Introduction to Test Automation and Its Goals30

To make this possible, you cannot afford to ignore the overall organiza-
tional conditions. In agile projects, this means that the automatability
(i.e., the testability) of an application and the degree of automation for a
user story are essential items in the team’s “definition of done”, and must
be treated like any other acceptance criteria.

This is important because it creates an awareness of the steadily
increasing testing effort that comes with each sprint. In practice, it is rare
that all existing functionalities are re-tested in each sprint. Even if only
some functionalities are regression tested, the balance between function-
ality to be tested and functionality to be developed within a sprint quickly
shifts to the detriment of testing. The team must respond by driving auto-
mation and adjusting sprint planning accordingly. A good agile team will
always find the right solution because the entire team is responsible for
the functioning software that emerges at the end of the sprint.

DevOps

In addition to agile projects, DevOps is another software development
concept that has enjoyed increasingly widespread use in recent years. The
basic idea is very much based on agile principles and agile software devel-
opment practices, but additional focus is placed on the integration of busi-
ness units and operations as well as automation in all areas of the soft-
ware lifecycle (development, testing, deployment, and operations). On an
abstract level, the objectives of DevOps can be summarized as follows:

Automation is a must-

have in agile projects

Fig. 1–8
Increasing effort and

growth of the regression

test portfolio in an

agile project

04
.2

01
9

06
.2

01
9

08
.2

01
9

10
.2

01
9

12
.2

01
9

02
.2

02
0

04
.2

02
0

06
.2

02
0

08
.2

02
0

10
.2

02
0

12
.2

02
0

02
.2

02
1

04
.2

02
1

06
.2

02
1

08
.2

02
1

10
.2

02
1

12
.2

02
1

Maintenance
and Operation

New Functionality

Existing Functionality

Cumulative TA Effort

Cumulative Test Effort

Cumulative Story Points (ave.)

R
eg

re
ss

io
n

Te
st

in
g



311.5 Excursus: Test Levels and Project Types

 Improvement of overall system quality and therefore added value for
end-users

 Shorter delivery cycles and thus more effective feedback cycles

 Cost reduction and increased efficiency

 More flexibility and thus an increased ability to respond to changing
conditions

The CALMS framework assesses a company’s ability to adopt the
DevOps approach, and its acronym represents the following organiza-
tional viewpoints.

Culture

An essential premise is that DevOps cannot be regarded simply as a pro-
cess or an approach to software development. Instead, it revolves around
the team culture and organizational culture, which are strictly oriented
towards seamless, cross-functional collaboration.

In many cases, a shared team vision and mission can help to lay the
foundations for this culture. There are various approaches to building
such a vision, but a major prerequisite is trust between team members
and between team members/DevOps and management. In turn, manage-
ment also needs to have faith in the corresponding return on investment
(ROI).

This open culture inevitably involves transparency in communica-
tion. Success and failure are part of the culture and both are part of the
process. Failures should lead to the establishment of continuous improve-
ment or to learning something new. The way a company deals with fail-
ures is often deeply ingrained in the organizational culture and can pre-
vent the success of DevOps, for example through open or concealed
apportioning of blame.

Automation

Generally speaking, organizations should strive to automate as many
manual and recurring tasks as possible, but they need to consider stabil-
ity, maintainability, and simplicity when doing so. The subject of automa-
tion covers a broad range of subtopics, many each of which could fill
entire articles and books on their own. The following sections summarize
some of the most important ones:



1 An Introduction to Test Automation and Its Goals32

 Automating the build process
As previously mentioned, continuous integration and delivery are
core practices here, but the automation process also has to include an
adequate branching concept and automated versioning (for example,
semantic versioning) for build artifacts.

 Automating the testing process
When automating, activities that are part of the testing process are an
obvious place to start. It is important to emphasize that this applies to
all test levels and test types, from requirements quality assurance,
ensuring sufficient coverage through automated unit testing, static
code analysis and automated validation of complete systems, all the
way up to automated test activities in productive systems (for exam-
ple, A/B testing). The detection of possible security risks and attack
vectors can also be ensured using dynamic application security testing
(DAST), static application security testing (SAST), dependency scan-
ning, container scanning, and secret detection.

 Automating infrastructure provisioning
The infrastructure as code (IaC) approach, using common tools such
as Ansible, Chef, Terraform, Puppet, Kubernetes and others, is just as
much part of this process as approaches such as GitOps, where it is
especially clear how closely operations have to cooperate with other
areas of the software lifecycle. In turn, this makes infrastructure a
central development artifact, and makes the team responsible for
ensuring its quality.

 Automating the deployment and delivery process
In addition to important principles such as continuous delivery or
continuous deployment, other questions also need to be addressed.
These include automating the change log and version references and
archiving artifacts to ensure traceability.

 Automating the monitoring process
As previously mentioned, you need to consider how a product will
eventually be used right at the start of the development process. Fur-
thermore, in addition to monitoring the infrastructure, you also have
to think about possible application-specific items. Analyzing log files
or, more specifically, syntactically correct logging, is essential. Cus-
tomer feedback and data collection from A/B or functional tests are
also important monitoring tasks that have to be considered too.



331.5 Excursus: Test Levels and Project Types

Lean

Development teams use lean software development principles to elimi-
nate “waste” by defining end-user value and understanding how to
achieve it. For example, the value stream is optimized by minimizing con-
current work (using a WIP limit), making work and progress visible and
traceable, reducing handoff complexity, and breaking down steps to
ensure that the flow of remaining steps is smooth, uninterrupted and
wait-free. It also includes introducing cross-functional teams and training
employees to be versatile and adaptable.

Measurement

To better understand the capabilities and potential for optimization in the
current system, it is necessary to have well-defined metrics. Data and
information for collection and analysis can be planning data, product
data, quality data, or more general team data. However, the basic pre-
mise is always that this data should not be used to monitor the team, but
rather to continuously improve it. This is only possible if there is suffi-
cient trust and an appropriate failure culture is established. Otherwise,
you will have to assume that your metrics will be only partially valid, or
not valid at all.

In terms of continuous improvement, the following activities are
therefore helpful:

 Collect and analyze product and system-specific data

 Define metrics and thresholds

 Monitor and track metrics, and automate notifications

 Detect and document failures

 Define quality gates and ensure that they are complied with

 Create a culture of continuous learning and improvement

 Improve efficiency and reduce cycle times

Sharing

Typically, this involves establishing a blame-free culture, which may
sound simple, but requires plenty of experience and understanding as
well as good role models at management level.

An open communication culture should also promote the principle of
asking and sharing. Good technical/organizational solutions and experi-
ences should be shared within and between teams. This helps to transfer
the resulting improved efficiency to other parts of the organization.



1 An Introduction to Test Automation and Its Goals34

Migration Projects

For migration projects, the million-dollar question is: does the system still
function as it did before? Test automation can help to answer this ques-
tion in several ways.

Test Data Generation

To test data migration at an early stage, you need to prepare two test data
sets:

 Machine-generated synthetic data 
This data set is based on the migration rules and thus tests the imple-
mented data import procedures in a structured way. It is derived from
test case specification methods and can therefore be generated using
the available tools.

 Production data
Tests with production data are essential, as this is the data that will
ultimately be migrated. There are always real-world data configura-
tions that are not specified in the requirements or design documents,
and that cause problems during migration. Here, automation can be
used to export the production data from the old system and, if neces-
sary, anonymize it. The exported data can also be used post-test for
the actual migration. Anonymization may be required for legal rea-
sons (for example, to prevent the test team from seeing personal data)
or due to general data privacy requirements. However, it is important
to ensure that anonymized data retains the original data structure and
doesn’t corrupt specific attributes such as spelling.

The task of test data management is a very complex one and especially the
handling of sensitive data and large amounts of data for test and test auto-
mation purposes requires a lot of knowledge and experience. These cir-
cumstances motivated the German Testing Board to develop a training
course for the Certified Test Data Specialist (GTB), whose curriculum pro-
vides a good overview of this topic (only in German) [GTB: TDS].

Data Comparison

Newly migrated data cannot be manually checked against the original
data set, especially when large amounts of data are migrated. Data com-
parison therefore has to be automated. This can, for example, be per-
formed using specialized comparator tools that can also apply certain
specific rules to the data sets being compared.



351.5 Excursus: Test Levels and Project Types

Process Comparison

The feasibility of using test automation to check functionality before and
after a migration depends very much on the type of migration. For exam-
ple, if an application has been migrated to a new platform, or if it has
been connected to a different database, running a comprehensive, auto-
mated test suite that has already been developed for the previous system
can very quickly deliver the desired results in the new environment. This
task is more complex if a system has been automatically transformed—
for example, from Cobol to Java. In most cases the automated test cases
must be adapted, and the effort required depends on the extent to which
the business test cases are decoupled from the technical implementation.

If the migration is to a completely new solution, an automated com-
parison of processes with those in the original system may not be practi-
cal from a cost-benefit point of view.

Migrating a Test Automation Solution

Just like the system itself, an existing test automation solution can also be
migrated. If the automation in question is keyword-based and the pro-
cesses remain the same, it is sufficient to change the scripts behind the
keywords. New keywords may have to be created or old keywords
declared obsolete, but the description language remains the same. This
means that testers do not have to learn a new language and can still use
most of the test cases that have already been automated.

Real-World Examples: 
Gradual conversion of keywords
In an agile legacy system replacement project, keyword-based test cases were imple-
mented. Due to the complex workflows, some actions had to be performed on the
legacy system to implement automated end-to-end test cases. During the project,
the legacy system was replaced step by step, and the keywords were changed one by
one to address the newly developed product instead of the legacy system. Due to
the similar structures and workflows of the two systems, it was possible to retain a
large portion of the existing test cases, even though the technologies and activities
performed were ultimately very different.

